Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Int J Mol Sci ; 24(9)2023 May 05.
Article in English | MEDLINE | ID: covidwho-2312704

ABSTRACT

The binding properties of synthetic and recombinant peptides derived from N-terminal part of ACE2, the main receptor for SARS-CoV-2, were evaluated. Additionally, the ability of these peptides to prevent virus entry in vitro was addressed using both pseudovirus particles decorated with the S protein, as well as through infection of Vero cells with live SARS-CoV-2 virus. Surprisingly, in spite of effective binding to S protein, all linear peptides of various lengths failed to neutralize the viral infection in vitro. However, the P1st peptide that was chemically "stapled" in order to stabilize its alpha-helical structure was able to interfere with virus entry into ACE2-expressing cells. Interestingly, this peptide also neutralized pseudovirus particles decorated with S protein derived from the Omicron BA.1 virus, in spite of variations in key amino acid residues contacting ACE2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Chlorocebus aethiops , Humans , SARS-CoV-2/metabolism , Vero Cells , Angiotensin-Converting Enzyme 2/metabolism , Protein Binding , Peptides/pharmacology , Peptides/metabolism
2.
Microorganisms ; 11(2)2023 Feb 01.
Article in English | MEDLINE | ID: covidwho-2225463

ABSTRACT

Emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) show immune evasion of vaccine-derived immunity, highlighting the need for better clinical immunogenicity biomarkers. To address this need, an enzyme-linked immunosorbent assay-based, human angiotensin-converting enzyme 2 (hACE2) binding inhibition assay was developed to measure antibodies against the ancestral strain of SARS-CoV-2 and was validated for precision, specificity, linearity, and other parameters. This assay measures the inhibition of SARS-CoV-2 spike (S) protein binding to the receptor, hACE2, by serum from vaccine clinical trials. Inter- and intra-assay precision, specificity, linearity, lower limit of quantitation, and assay robustness parameters successfully met the acceptance criteria. Heme and lipid matrix effects showed minimal interference on the assay. Samples were stable for testing in the assay even with 8 freeze/thaws and up to 24 months in -80 °C storage. The assay was also adapted for variants (Delta and Omicron BA.1/BA.5), with similar validation results. The hACE2 assay showed significant correlation with anti-recombinant S immunoglobulin G levels and neutralizing antibody titers. This assay provides a rapid, high-throughput option to evaluate vaccine immunogenicity. Along with other clinical biomarkers, it can provide valuable insights into immune evasion and correlates of protection and enable vaccine development against emerging COVID-19 variants.

3.
Brief Funct Genomics ; 22(3): 291-301, 2023 05 18.
Article in English | MEDLINE | ID: covidwho-2222574

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first detected in December 2019. As of mid-2021, the delta variant was the primary type; however, in January 2022, the omicron (BA.1) variant rapidly spread and became the dominant type in the United States. In June 2022, its subvariants surpassed previous variants in different temporal and spatial situations. To investigate the high transmissibility of omicron variants, we assessed the complex of spike protein 1 receptor-binding domain (S1RBD) and human angiotensin-converting enzyme 2 (hACE2) from the Protein Data Bank (6m0j, 7a91, 7mjn, 7v80, 7v84, 7v8b, 7wbl and 7xo9) and directly mutated specific amino acids to simulate several variants, including variants of concern (alpha, beta, gamma, delta), variants of interest (delta plus, epsilon, lambda, mu, mu without R346K) and omicron variants (BA.1, BA.2, BA.2.12.1, BA.4, BA.5). Molecular dynamics (MD) simulations for 100 ns under physiological conditions were then performed. We found that the omicron S1RBD-hACE2 complexes become more compact with increases in hydrogen-bond interactions at the interface, which is related to the transmissibility of SARS-CoV-2. Moreover, the relaxation time of hydrogen bonds is relatively short among the omicron variants, which implies that the interface conformation alterations are fast. From the molecular perspective, PHE486 and TYR501 in omicron S1RBDs need to involve hydrogen bonds and hydrophobic interactions on the interface. Our study provides structural features of the dominant variants that explain the evolution trend and their increased contagiousness and could thus also shed light on future variant changes.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Angiotensin-Converting Enzyme 2/genetics , Hydrogen Bonding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
4.
Methods Mol Biol ; 2610: 179-186, 2023.
Article in English | MEDLINE | ID: covidwho-2173497

ABSTRACT

Coronaviruses (CoVs) infect host cells through the fusion of viral and cellular membrane and may also spread to the neighboring uninfected cells from infected cells through cell-cell fusion. The viral spike (S) glycoproteins play an essential role in mediating membrane fusion. Here, we present a luciferase-based quantitative assay to measure the efficiency of cell-cell fusion mediated by the S protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This method applies to S proteins of the other coronaviruses and can be adapted to fusion proteins of other enveloped viruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Cell Fusion , Glycoproteins , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
5.
Mikrobiolohichnyi Zhurnal ; 84(1):39-48, 2022.
Article in English | Scopus | ID: covidwho-2056528

ABSTRACT

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is a new coronavirus today has an extremely significant impact on both the global economy and society as a whole, due to its pandemic status and risk of complica-tions. Therefore, understanding the molecular features of the interaction of receptor binding domain (RBD), which determines most of the dangerous properties of this pathogen, with human angiotensin-converting enzyme 2 (hACE2) is an important step in the process of developing a successful strategy to combat SARS-CoV-2. In addition, given the significant rate of accumulation of mutations in RBD, it makes sense to consider its different variants. Goal. Identification of a pocket potentially suitable for the search for low molecular mass inhibitors of the interaction of different variants of SARS-CoV-2 RBD and hACE2. Methods. The initial structure of different variants of the RBD/hACE2 complex was obtained from Protein Data Bank (PDB). Separate RBD variants were isolated from the same data. To obtain the Y453F mutant, variant P.1 was mutagenized in PyMol 1.8. The construction of the system, which included the resulting associ-ate or individual protein, solvent, and physiological concentration of sodium chloride, was performed using CHARMM-GUI (graphical user interface for CHARMM) tools according to the standard protocol for glycoproteins. The actual simulation and balancing of the system were performed in GROMACS (GROningen MAchine for Chemical Simulation) version 2019.6 for 50 ns. Results. The interface of the RBD/hACE2 interaction is formed by amino acids Q24, D30, H34, E35, E37, Y41, Y83, K353, D355, and R393 for hACE2 and K417, Y453, F486, N487, Y489, Q493, Q498, T500, N501, and Y505 — for RBD. However, it is heterogeneous and can be divided into two subinterfaces, and each either of them includes its own pool of interactions: hACE2 Q24/Y83 + RBD N487, hACE2 H34 + RBD Y453, hACE2 E35 + + RBD Q493, and hACE2 D30 + RBD K417 for N-terminal relative to H1 hACE2 subinterface and hACE2 E37/R393 + + RBD Y505, hACE2 K353 + RBD Q498/G502, and hACE2 D355 + RBD T500 — for C-terminal. According to the considered N501Y mutation, changes are observed in the mentioned interaction patterns — hydrogen bonds of hACE2 Q42 + RBD Q498, hACE2 K31 + RBD Q493, and hACE2 K31 + RBD F490 are formed, and hACE2 H34 + RBD Y453 is lost. Similar aberrations, except for the hydrogen bond with F490, are observed in the case of the N501Y + Y453F vari-ant. Despite significant changes in the pool of interactions, the gross number of hydrogen bonds for the complexes of all three variants is relatively stable and ranges from 9 to 10. The defined interaction for all considered variants of RBD are characterized by the presence of a pocket between the subinterfaces, which is formed by the residues R403, Y453, Q493, S494, Y495, G496, F497, Q498, N501, and Y505 conditionally original variant. According to the results of the molecular dynamics simulation, the Y453F replacement has little effect on the overall topology of the cavity but sufficiently reduces the polarity of the pocket part of its localization, which leads to the impossibility of forming any polar interactions. In contrast, N501Y, due to a larger size of the tyrosine radical and the presence of parahydroxyl, forms two equivalent mutually exclusive hydrogen bonds with the carbonyls of the peptide groups G496 and Y495. Additional stabilization of Y501 is provided by interplanar stacking with Y505. In addition to the anchored position in ~ 25% of the trajectory, there is another “open” conformation Y501, at which the radical of this tyrosine does not interact with the rest of the protein. Conclusions. 1) The interface of the interaction of SARS-CoV-2 RBD with hACE2 is not continuous, and it can be conditionally divided into two subinterfaces: N-terminal and C-terminal. Either of them is characterized by its own pattern of connections and changes according to the RBD N501Y and Y453F replacements considered. However, despite the presence of significant molecular ear angements caused by N501Y and Y453F, the total number of hydrogen bonds is almost the same for all mutants. 2) Between the identified interaction subinterfaces, SARS-CoV-2 RBD contains a caveola, which due to its location may be potentially suitable for finding promising candidates for drugs aimed at inhib-iting the interaction of this protein with hACE2. In this case, the replacements of N501Y and Y453F have a significant impact on the topology of a particular pocket and can potentially modify the activity of inhibitors directed to this area. © Publisher PH «Akademperiodyka» of the NAS of Ukraine, 2022.

6.
J Virol ; 96(13): e0068522, 2022 07 13.
Article in English | MEDLINE | ID: covidwho-1891738

ABSTRACT

Since its outbreak in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread with high transmission efficiency across the world, putting health care as well as economic systems under pressure. During the course of the pandemic, the originally identified SARS-CoV-2 variant has been multiple times replaced by various mutant versions, which showed enhanced fitness due to increased infection and transmission rates. In order to find an explanation for why SARS-CoV-2 and its emerging mutated versions showed enhanced transmission efficiency compared with SARS-CoV (2002), an enhanced binding affinity of the spike protein to human angiotensin converting enzyme 2 (hACE2) has been proposed by crystal structure analysis and was identified in cell culture models. Kinetic analysis of the interaction of various spike protein constructs with hACE2 was considered to be best described by a Langmuir-based 1:1 stoichiometric interaction. However, we demonstrate in this report that the SARS-CoV-2 spike protein interaction with hACE2 is best described by a two-step interaction, which is defined by an initial binding event followed by a slower secondary rate transition that enhances the stability of the complex by a factor of ~190 (primary versus secondary state) with an overall equilibrium dissociation constant (KD) of 0.20 nM. In addition, we show that the secondary rate transition is not only present in SARS-CoV-2 wild type ("wt"; Wuhan strain) but also found in the B.1.1.7 variant, where its transition rate is 5-fold increased. IMPORTANCE The current SARS-CoV-2 pandemic is characterized by the high infectivity of SARS-CoV-2 and its derived variants of concern (VOCs). It has been widely assumed that the reason for its increased cell entry compared with SARS-CoV (2002) is due to alterations in the viral spike protein, where single amino acid residue substitutions can increase affinity for hACE2. So far, the interaction of a single unit of the CoV-2 spike protein has been described using the 1:1 Langmuir interaction kinetic. However, we demonstrate here that there is a secondary state binding step that may be essential for novel VOCs in order to further increase their infectivity. These findings are important for quantitatively understanding the infection process of SARS-CoV-2 and characterization of emerging SARS-CoV-2 variants of spike proteins. Thus, they provide a tool for predicting the potential infectivity of the respective viral variants based on secondary rate transition and secondary complex stability.


Subject(s)
Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Humans , Kinetics , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Protein Structure, Secondary , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
7.
Gene Rep ; 27: 101636, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1885776

ABSTRACT

Since the beginning of the of SARS-CoV-2 (Covid-19) pandemic, variants of concern (VOC) have emerged taxing health systems worldwide. In October 2020, a new variant of SARS-CoV-2 (B.1.617+/Delta variant) emerged in India, triggering a deadly wave of Covid-19. Epidemiological data strongly suggests that B.1.617+ is more transmissible and previous reports have revealed that B.1.617+ has numerous mutations compared to wild type (WT), including several changes in the spike protein (SP). The main goal of this study was to use In Silico (computer simulation) techniques to examine mutations in the SP, specifically L452R and E484Q (part of the receptor binding domain (RBD) for human angiotensin-converting enzyme 2 (hACE2)) and P681R (upstream of the Furin cleavage motif), for effects in modulating the transmissibility of the B.1.617+ variant. Using computational models, the binding free energy (BFE) and H-bond lengths were calculated for SP-hACE2 and SP-Furin complexes. Comparison of the SP-hACE2 complex in the WT and B.1.617+ revealed both complexes have identical receptor-binding modes but the total BFE of B.1.617+ binding was more favorable for complex formation than WT, suggesting L452R and E484Q have a moderate impact on binding affinity. In contrast, the SP-Furin complex of B.1.617+ substantially lowered the BFE and revealed changes in molecular interactions compared to the WT complex, implying stronger complex formation between the variant and Furin. This study provides an insight into mutations that modulate transmissibility of the B.1.617+ variant, specifically the P681R mutation which appears to enhance transmissibility of the B.1.617+ variant by rendering it more receptive to Furin.

8.
J Biomed Opt ; 27(5)2022 05.
Article in English | MEDLINE | ID: covidwho-1874482

ABSTRACT

SIGNIFICANCE: Fast and reliable detection of infectious SARS-CoV-2 virus loads is an important issue. Fluorescence spectroscopy is a sensitive tool to do so in clean environments. This presumes a comprehensive knowledge of fluorescence data. AIM: We aim at providing fully featured information on wavelength and time-dependent data of the fluorescence of the SARS-CoV-2 spike protein S1 subunit, its receptor-binding domain (RBD), and the human angiotensin-converting enzyme 2, especially with respect to possible optical detection schemes. APPROACH: Spectrally resolved excitation-emission maps of the involved proteins and measurements of fluorescence lifetimes were recorded for excitations from 220 to 295 nm. The fluorescence decay times were extracted by using a biexponential kinetic approach. The binding process in the SARS-CoV-2 RBD was likewise examined for spectroscopic changes. RESULTS: Distinct spectral features for each protein are pointed out in relevant spectra extracted from the excitation-emission maps. We also identify minor spectroscopic changes under the binding process. The decay times in the biexponential model are found to be ( 2.0 ± 0.1 ) ns and ( 8.6 ± 1.4 ) ns. CONCLUSIONS: Specific material data serve as an important background information for the design of optical detection and testing methods for SARS-CoV-2 loaded media.


Subject(s)
COVID-19 , SARS-CoV-2 , Fluorescence , Humans , Membrane Glycoproteins/metabolism , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism
9.
Chem Eng J ; 442: 136143, 2022 Aug 15.
Article in English | MEDLINE | ID: covidwho-1767962

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has led to a pandemic of acute respiratory disease, namely coronavirus disease (COVID-19). This disease threatens human health and public safety. Early diagnosis, isolation, and prevention are important to suppress the outbreak of COVID 19 given the lack of specific antiviral drugs to treat this disease and the emergence of various variants of the virus that cause breakthrough infections even after vaccine administration. Simple and prompt testing is paramount to preventing further spread of the virus. However, current testing methods, namely RT-PCR, is time-consuming. Binding of the SARS-CoV-2 spike (S) glycoprotein to human angiotensin-converting enzyme 2 (hACE2) receptor plays a pivotal role in host cell entry. In the present study, we developed a hACE2 mimic peptide beacon (COVID19-PEB) for simple detection of SARS-CoV-2 using a fluorescence resonance energy transfer system. COVID19-PEB exhibits minimal fluorescence in its ''closed'' hairpin structure; however, in the presence of SARS-CoV-2, the specific recognition of the S protein receptor-binding domain by COVID19-PEB causes the beacon to assume an ''open'' structure that emits strong fluorescence. COVID19-PEB can detect SARS-CoV-2 within 3 h or even 50 min and exhibits strong fluorescence even at low viral concentrations, with a detection limit of 4 × 103 plaque-forming unit/test. Furthermore, in SARS-CoV-2-infected patient samples confirmed using polymerase chain reaction, COVID19-PEB accurately detected the virus. COVID19-PEB could be developed as a rapid and accurate diagnostic tool for COVID-19.

10.
Int J Mol Sci ; 23(6)2022 Mar 21.
Article in English | MEDLINE | ID: covidwho-1753509

ABSTRACT

The new variant of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), Omicron, has been quickly spreading in many countries worldwide. Compared to the original virus, Omicron is characterized by several mutations in its genomic region, including the spike protein's receptor-binding domain (RBD). We have computationally investigated the interaction between the RBD of both the wild type and Omicron variant of SARS-CoV-2 with the human angiotensin-converting enzyme 2 (hACE2) receptor using molecular dynamics and molecular mechanics-generalized Born surface area (MM-GBSA)-based binding free energy calculations. The mode of the interaction between Omicron's RBD with the hACE2 receptor is similar to the original SARS-CoV-2 RBD except for a few key differences. The binding free energy difference shows that the spike protein of Omicron has an increased affinity for the hACE2 receptor. The mutated residues in the RBD showed strong interactions with a few amino acid residues of hACE2. More specifically, strong electrostatic interactions (salt bridges) and hydrogen bonding were observed between R493 and R498 residues of the Omicron RBD with D30/E35 and D38 residues of the hACE2, respectively. Other mutated amino acids in the Omicron RBD, e.g., S496 and H505, also exhibited hydrogen bonding with the hACE2 receptor. A pi-stacking interaction was also observed between tyrosine residues (RBD-Tyr501: hACE2-Tyr41) in the complex, which contributes majorly to the binding free energies and suggests that this is one of the key interactions stabilizing the formation of the complex. The resulting structural insights into the RBD:hACE2 complex, the binding mode information within it, and residue-wise contributions to the free energy provide insight into the increased transmissibility of Omicron and pave the way to design and optimize novel antiviral agents.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2 , Humans , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Virulence
11.
BMC Med ; 20(1): 102, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1724486

ABSTRACT

BACKGROUND: The COVID-19 pandemic is caused by the betacoronavirus SARS-CoV-2. In November 2021, the Omicron variant was discovered and immediately classified as a variant of concern (VOC), since it shows substantially more mutations in the spike protein than any previous variant, especially in the receptor-binding domain (RBD). We analyzed the binding of the Omicron RBD to the human angiotensin-converting enzyme-2 receptor (ACE2) and the ability of human sera from COVID-19 patients or vaccinees in comparison to Wuhan, Beta, or Delta RBD variants. METHODS: All RBDs were produced in insect cells. RBD binding to ACE2 was analyzed by ELISA and microscale thermophoresis (MST). Similarly, sera from 27 COVID-19 patients, 81 vaccinated individuals, and 34 booster recipients were titrated by ELISA on RBDs from the original Wuhan strain, Beta, Delta, and Omicron VOCs. In addition, the neutralization efficacy of authentic SARS-CoV-2 wild type (D614G), Delta, and Omicron by sera from 2× or 3× BNT162b2-vaccinated persons was analyzed. RESULTS: Surprisingly, the Omicron RBD showed a somewhat weaker binding to ACE2 compared to Beta and Delta, arguing that improved ACE2 binding is not a likely driver of Omicron evolution. Serum antibody titers were significantly lower against Omicron RBD compared to the original Wuhan strain. A 2.6× reduction in Omicron RBD binding was observed for serum of 2× BNT162b2-vaccinated persons. Neutralization of Omicron SARS-CoV-2 was completely diminished in our setup. CONCLUSION: These results indicate an immune escape focused on neutralizing antibodies. Nevertheless, a boost vaccination increased the level of anti-RBD antibodies against Omicron, and neutralization of authentic Omicron SARS-CoV-2 was at least partially restored. This study adds evidence that current vaccination protocols may be less efficient against the Omicron variant.


Subject(s)
COVID-19 , BNT162 Vaccine , COVID-19/prevention & control , Humans , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
12.
S Afr J Bot ; 146: 735-739, 2022 May.
Article in English | MEDLINE | ID: covidwho-1586568

ABSTRACT

Plant-based compounds with antiviral properties against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been identified in Aframomum melegueta through computational models. The seed extract have been traditionally used to treat different illnesses. In this study, ethanolic extracts were prepared for six commercial samples of A. melegueta seeds. Antiviral activity was tested using the XTT cytotoxicity assay and cell-based SARS-CoV-1 and 2 pseudoviral models. The presence of gingerols and other non-volatile components in the seed extracts was determined using an Agilent 1290 UPLC/DAD in tandem with an Agilent 6546 QTOF-MS. Our results showed selective antiviral activity with TI values as high as 13.1. Fifteen gingerols were identified by chromatographic analysis, with 6-gingerol being the dominant component in each seed extract. A combination of 6-gingerol with techtochrysin, previously identified in computational models as a potential active ingredient against SARS-CoV-2, demonstrated additive antiviral activity with CI values between 0.8715 and 0.9426. We confirmed the antiviral activity of A. melegueta predicted through computational models and identified a different compound, 6-gingerol, as a potential active ingredient.

13.
J Mol Graph Model ; 109: 108035, 2021 12.
Article in English | MEDLINE | ID: covidwho-1415578

ABSTRACT

The pandemic of the COVID-19 disease caused by SARS-CoV-2 has led to more than 200 million infections and over 4 million deaths worldwide. The progress in the developments of effective vaccines and neutralizing antibody therapeutics brings hopes to eliminate the threat of COVID-19. However, SARS-CoV-2 continues to mutate, and several new variants have been emerged. Among the various naturally-occurring mutations, the E484K mutation shared by many variants attracted serious concerns, which may potentially enhance the receptor binding affinity and reduce the immune response. In the present study, the molecular mechanism behind the impacts of E484K mutation on the binding affinity of the receptor-binding domain (RBD) with the receptor human angiotensin-converting enzyme 2 (hACE2) was investigated by using the molecular dynamics (MD) simulations combined with the molecular mechanics-generalized Born surface area (MMGBSA) method. Our results indicate that the E484K mutation results in more favorable electrostatic interactions compensating the burial of the charged and polar groups upon the binding of RBD with hACE2, which significantly improves the RBD-hACE2 binding affinity. Besides that, the E484K mutation also causes the conformational rearrangements of the loop region containing the mutant residue, which leads to tighter binding interface of RBD with hACE2 and formation of some new hydrogen bonds. The tighter binding interface and the new hydrogen bonds formation also contribute to the improved binding affinity of RBD to the receptor hACE2. In addition, six neutralizing antibodies and nanobodies complexed with RBD were selected to explore the effects of E484K mutation on the recognition of these antibodies to RBD. The simulation results show that the E484K mutation significantly reduces the binding affinities to RBD for most of the studied neutralizing antibodies/nanobodies, and the decrease in the binding affinities is mainly owing to the unfavorable electrostatic interactions caused by the mutation. Our studies revealed that the E484K mutation may improve the binding affinity between RBD and the receptor hACE2, implying more transmissibility of the E484K-containing variants, and weaken the binding affinities between RBD and the studied neutralizing antibodies/nanobodies, indicating reduced effectiveness of these antibodies/nanobodies. Our results provide valuable information for the effective vaccine development and antibody/nanobody drug design.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19 , Single-Domain Antibodies , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Neutralizing , Humans , Mutation , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
14.
J Mol Struct ; 1241: 130665, 2021 Oct 05.
Article in English | MEDLINE | ID: covidwho-1230678

ABSTRACT

SARS-CoV-2 are enveloped positive-stranded RNA viruses that replicate in the cytoplasm. It relies on the fusion of their envelope with the host cell membrane to deliver their nucleocapsid into the host cell. The spike glycoprotein (S) mediates virus entry into cells via the human Angiotensin-converting enzyme 2 (hACE2) protein located on many cell types and tissues' outer surface. This study, therefore, aimed to design and synthesize novel pyrazolone-based compounds as potential inhibitors that would interrupt the interaction between the viral spike protein and the host cell receptor to prevent SARS-CoV 2 entrance into the cell. A series of pyrazolone compounds as potential SARS-CoV-2 inhibitors were designed and synthesized. Employing computational techniques, the inhibitory potentials of the designed compounds against both spike protein and hACE2 were evaluated. Results of the binding free energy from the in-silico analysis, showed that three compounds (7i, 7k and 8f) and six compounds (7b, 7h, 7k, 8d, 8g, and 8h) showed higher and better binding high affinity to SARS-CoV-2 Sgp and hACE-2, respectively compared to the standard drugs cefoperazone (CFZ) and MLN-4760. Furthermore, the outcome of the structural analysis of the two proteins upon binding of the inhibitors showed that the two proteins (SARS-CoV-2 Sgp and hACE-2) were stable, and the structural integrity of the proteins was not compromised. This study suggests pyrazolone-based compounds might be potent blockers of the viral entry into the host cells.

15.
Gene Rep ; 23: 101045, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1085555

ABSTRACT

In late 2019, a novel Coronavirus emerged in China. Perceiving the modulating factors of cross-species virus transmission is critical to elucidate the nature of virus emergence. Using bioinformatics tools, we analyzed the mapping of the SARS-CoV-2 genome, modeling of protein structure, and analyze the evolutionary origin of SARS-CoV-2, as well as potential recombination events. Phylogenetic tree analysis shows that SARS-CoV-2 has the closest evolutionary relationship with Bat-SL-CoV-2 (RaTG13) at the scale of the complete virus genome, and less similarity to Pangolin-CoV. However, the Receptor Binding Domain (RBD) of SARS-CoV-2 is almost identical to Pangolin-CoV at the aa level, suggesting that spillover transmission probably occurred directly from pangolins, but not bats. Further recombination analysis revealed the pathway for spillover transmission from Bat-SL-CoV-2 and Pangolin-CoV. Here, we provide evidence for recombination event between Bat-SL-CoV-2 and Pangolin-CoV that resulted in the emergence of SARS-CoV-2. Nevertheless, the role of mutations should be noted as another influencing factor in the continuing evolution and resurgence of novel SARS-CoV-2 variants.

16.
Sens Actuators B Chem ; 334: 129663, 2021 May 01.
Article in English | MEDLINE | ID: covidwho-1085478

ABSTRACT

The global outbreak of coronavirus disease and rapid spread of the causative severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represent a significant threat to human health. A key mechanism of human SARS-CoV-2 infection is initiated by the combination of human angiotensin-converting enzyme 2 (hACE2) and the receptor-binding domain (RBD) of the SARS-CoV-2-derived spike glycoprotein. Despite the importance of these protein interactions, there are still insufficient detection methods to observe their activity at the cellular level. Herein, we developed a novel fluorescence resonance energy transfer (FRET)-based hACE2 biosensor to monitor the interaction between hACE2 and SARS-CoV-2 RBD. This biosensor facilitated the visualization of hACE2-RBD activity with high spatiotemporal resolutions at the single-cell level. Further studies revealed that the FRET-based hACE2 biosensors were sensitive to both exogenous and endogenous hACE2 expression, suggesting that they might be safely applied to the early stage of SARS-CoV-2 infection without direct virus use. Therefore, our novel biosensor could potentially help develop drugs that target SARS-CoV-2 by inhibiting hACE2-RBD interaction.

17.
Comput Struct Biotechnol J ; 19: 759-766, 2021.
Article in English | MEDLINE | ID: covidwho-1036889

ABSTRACT

The recent emergence of the novel SARS-CoV-2 in China and its rapid spread in the human population has led to a public health crisis worldwide. Like in SARS-CoV, horseshoe bats currently represent the most likely candidate animal source for SARS-CoV-2. Yet, the specific mechanisms of cross-species transmission and adaptation to the human host remain unknown. Here we show that the unsupervised analysis of conservation patterns across the ß-CoV spike protein family, using sequence information alone, can provide valuable insights on the molecular basis of the specificity of ß-CoVs to different host cell receptors. More precisely, our results indicate that host cell receptor usage is encoded in the amino acid sequences of different CoV spike proteins in the form of a set of specificity determining positions (SDPs). Furthermore, by integrating structural data, in silico mutagenesis and coevolution analysis we could elucidate the role of SDPs in mediating ACE2 binding across the Sarbecovirus lineage, either by engaging the receptor through direct intermolecular interactions or by affecting the local environment of the receptor binding motif. Finally, by the analysis of coevolving mutations across a paired MSA we were able to identify key intermolecular contacts occurring at the spike-ACE2 interface. These results show that effective mining of the evolutionary records held in the sequence of the spike protein family can help tracing the molecular mechanisms behind the evolution and host-receptor adaptation of circulating and future novel ß-CoVs.

18.
JACC Basic Transl Sci ; 6(1): 1-8, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-866798

ABSTRACT

Many efforts to design and screen therapeutics for the current severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) pandemic have focused on inhibiting viral host cell entry by disrupting angiotensin-converting enzyme-2 (ACE2) binding with the SARS-CoV-2 spike protein. This work focuses on the potential to inhibit SARS-CoV-2 entry through a hypothesized α5ß1 integrin-based mechanism and indicates that inhibiting the spike protein interaction with α5ß1 integrin (+/- ACE2) and the interaction between α5ß1 integrin and ACE2 using a novel molecule (ATN-161) represents a promising approach to treat coronavirus disease-19.

SELECTION OF CITATIONS
SEARCH DETAIL